The visual pathway and its disorders
Visual pathway
Visual disorders in humans can occur as a result of damage to the following anatomical structures:
- retina
- optic nerve
- optic chiasm
- optic tract
- lateral geniculate body
- geniculate-occipital tract
- the visual center of the occipital cortex of the cerebral hemispheres
Affected areas |
Visual field defects |
Schematic representation |
1. Unilateral lesion of the optic nerve | Blindness of the affected eye | |
2. The lesion is in the optic chiasm (chiasma) | Bitemporal hemianopsia ("blinders") | |
3. Unilateral lesion of the visual tract | Contralateral homonymous hemianopsia | |
4. Unilateral lesion of visual radiance in the Meyer loop (anterior part of the temporal lobe) | Contralateral upper quadrant anopsia ("pie in the sky") | |
5. Unilateral lesion of visual radiance, medial part | Contralateral lower quadrant anopsia | |
6. Lesion of the occipital lobe | Homonymous hemianopsia | |
7. Lesion of the occipital pole (cortical zones) | Homonymous hemianopic central scotoma |
Retinal lesions cause the appearance of arcuate scots (focal loss of the visual field), defined as islands of loss of the visual field, which are directed towards the blind spot or originate from it. Arcuate defects (damage to the bundle of nerve fibers) have a distinct border along the horizontal midline, and with its extensive size, they lead to the loss of half of the field of vision. Damage papillomacular beam, providing a Central fixation, leads to a Central (defeat the point of gaze fixation) or centrically (defeat the point of gaze fixation and the blind spot) scotoma. In the case of macular lesions, a small central scotoma often leads to impaired vision, visual perception, characterized by distortion of the shape and size of visible objects, especially straight lines (metamorphopsy), which distinguishes macular lesions from damage to the optic nerve.
A centrocecal scotoma is a frequent specific sign of optic nerve damage, the causes of which can be both internal (demyelinating, infiltrating, degenerative processes) and external compression (aneurysms, tumor) factors. Toxic effects (methyl alcohol, quinine, some phenothiazine-type tranquilizers)and eating disorders (tobacco and alcohol blindness) lead to the formation of relatively symmetrical bilateral central or centrocecal cattle. Progressive generalized narrowing of the peripheral isopters with relative preservation of the central vision may be a consequence of the annular compression of the tumor, as, for example, in meningioma of the optic nerve sheath. Spiral constriction or tube vision of inorganic origin (in hysteria, simulation) persists when examining vision from any distance. In the case of organic lesions, the outer diameter of the visual field defect will increase with the distance between the eye and the object under study.
A visual field defect that is localized in one half of the visual field of each eye is called hemianopsia. At the same time, there is a clear border along the vertical line.
Bitemporal hemianopsia indicates a lesion of the intersecting fibers of the nasal part of the retina in the area of the visual cross, usually due to compression of the chiasm (with a pituitary tumor, craniopharyngioma, meningioma of the Turkish saddle diaphragm, suprasellar aneurysm of the arteries of the Willis circle).
Homonymous hemianopsia (loss of the left or right halves of the visual fields) occurs when the visual pathway is affected above the intersection and in the case of complete hemianopsia, it does not allow to determine the exact localization. Incomplete homonymous hemianopsia more specifically indicates the possible site of the lesion:
- if the visual field defects are identical on both sides, it is most likely that the lesion is localized in the cortex of the groove
- if there is a mismatch of defects (asymmetry), then most likely the fibers of the optic tract, the lateral geniculate body, or the visual radiance of the parietal or temporal lobe have been damaged
Lesions of the visual tract are characterized by the development of asymmetric homonymous hemianopsia. Chronic damage to the tract is accompanied by an impaired afferent reaction of the pupil to light and transverse atrophy of the optic nerve on the opposite side.
In the case of lesions of the visual pathway above the lateral geniculate body, pupillary reflexes are preserved.
Nerve fibers from the lower quadrants of the retina project into the temporal lobe, so damage to this lobe can cause homonymous upper quadrant hemianopsia. Lesions of the parietal lobes affect the lower quadrants more than the upper quadrants; this can also lead to the occurrence of hemianopsia due to inattention.
Complete homonymous hemianopsia with the destruction of the fibers coming from the macula develops if the cortical parts of the large hemispheres are damaged in the area of the spur furrow on one side. The preservation of the macula is often due to imperfect fixation.
Bilateral homonymous hemianopsia occurs as a result of bilateral lesions of the visual cortex, usually of an ischemic nature, in the areas of blood supply to the posterior cerebral arteries. Persistent cortical blindness may develop. In such patients, Anton's syndrome is observed: bilateral blindness, denial of vision loss, normal pupillary reflexes, and bilateral infarcts in the occipital-parietal regions.
Other disorders of central vision include various types of image distortion, in which objects appear either too small (micropsia), or excessively large (macropsia), or curved. With bilateral symptoms, the temporal lobes are most likely to be affected; in this case, visual disorders occur at the time of epilepsy attacks and may be accompanied by complex visual hallucinations or other manifestations of temporal epilepsy.
Functional diagnostics of lesions of the anterior segment of the visual pathway
In addition to the study of visual fields, functional electrophysiological research methods are used in clinical practice to assess lesions of the anterior segment of the visual pathway:
- electroretinography (ERG) with photostimulation
- electroretinography with a checkerboard pattern (P-ERG)
- visual evoked potentials (VEP) to stimulate a checkerboard pattern
When performing electroretinography (ERG), electrical potentials are measured from each layer of the retina, which allows you to detect retinal lesions before changes appear on the fundus, such as in retinitis pigmentosa. However, electroretinography (ERG) does not detect changes caused by lesions of retinal ganglion cells and afferent parts of the visual pathway. The staggered pattern electroretinography (P-ERG) data allow us to judge the activity of ganglion cells, which decreases or completely disappears with lesions of the optic nerve, developing as a result of retrograde death of ganglion cells (Leber optical atrophy, demyelination).
Visual evoked potentials (VEP) characterize the predominant macular response, determined in the region of the occipital pole of the cerebral cortex. In the absence of retinal damage, visual evoked potentials (VEP) make it possible to assess, first of all, the functioning of the segment of the visual pathway to the external cranial body and especially the optic nerve.
Visual evoked potentials (VEP) provides significant assistance in the diagnosis of multiple sclerosis, allowing you to determine the presence of an optic nerve lesion even in the absence of other symptoms of visual impairment.
See also
- Anatomy of the nervous system
- Spinal disc herniation
- Pain in the arm and neck (trauma, cervical radiculopathy)
- The eyeball and the visual pathway:
- Anatomy of the eye and physiology of vision
- The visual pathway and its disorders
- Eye structures and visual disturbances that occur when they are affected
- Retina and optic disc, visual impairment when they are affected
- Impaired movement of the eyeballs
- Nystagmus and conditions resembling nystagmus
- Dry Eye Syndrome
- Optic nerve and retina:
- Compression neuropathy of the optic nerve
- Edema of the optic disc (papilledema)
- Ischemic neuropathy of the optic nerve
- Meningioma of the optic nerve sheath
- Optic nerve atrophy
- Optic neuritis in adults
- Optic neuritis in children
- Opto-chiasmal arachnoiditis
- Pseudo-edema of the optic disc (pseudopapilledema)
- Toxic and nutritional optic neuropathy
- Neuropathies and neuralgia:
- Diabetic, alcoholic, toxic and small fiber sensory neuropathy (SFSN)
- Facial nerve neuritis (Bell's palsy, post-traumatic neuropathy)
- Fibular (peroneal) nerve neuropathy
- Median nerve neuropathy
- Neuralgia (intercostal, occipital, facial, glossopharyngeal, trigeminal, metatarsal)
- Post-traumatic neuropathies
- Post-traumatic trigeminal neuropathy
- Post-traumatic sciatic nerve neuropathy
- Radial nerve neuropathy
- Tibial nerve neuropathy
- Ulnar nerve neuropathy
- Tumors (neoplasms) of the peripheral nerves and autonomic nervous system (neuroma, sarcomatosis, melanoma, neurofibromatosis, Recklinghausen's disease)
- Carpal tunnel syndrome
- Ulnar nerve compression in the cubital canal