Меню

Липопротеин (a)

Автор: ,

Липопротеин (a)

Липопротеин (a) — это подкласс липопротеинов плазмы крови человека. Липопротеин (a) отличается высоким полиморфизмом в своей белковой компоненте — аполипопротеине и высокой гетерогенностью концентрации в крови. Встречается также у приматов и некоторых других животных. Липопротеин (a) был открыт Бергом в 1963 году.

 

Структура липопротеина (a)

Исторически, деление липопротеинов на разные категории основано на различной плотности липопротеиновых частиц, определяемой ультрацентрифугированием:

  1. хиломикроны (chilomicrons)
  2. липопротеины очень низкой плотности (VLDL, ЛОНП)
  3. липопротеины промежуточной плотности (IDL, ЛПП)
  4. липопротеины низкой плотности (LDL, ЛПНП)
  5. липопротеины высокой плотности (HDL, ЛПВП)
  6. липопротеины (a) (Lp (a))

По плотности липопротеина (a) (Lp(a)) близки к HDL. По электрофоретической подвижности — к VLDL. Структурно же частицы Lp(a) сходны с LDL.

Частица ЛП(a) состоит из холестерина, триглицеридов, Апо В, фосфолипидов и аполипопротеина Апо(а). Они имеют сходный с LDL состав липидов и, также как и LDL, содержат 1 молекулу белка apo-B в каждой частице. Но белковая часть Lp(a) содержит еще и особый, присущий только этим липопротеинам, белок – аполипопротеин Апо(a).

Аполипопротеин Апо(а) — это большой гидрофильный и высокогликозилированный белок, который по составу похож на плазминоген. Аполипопротеин Апо(а) состоит из доменов, называемых «kringle», (крендель, англ.), которые, собственно, и сходны с аналогичными доменами плазминогена. Аполипопротеин Апо(а) состоит из неактивного протеазного домена, одного домена kringle V и разного количества доменов kringle IV.

У разных индивидов в гене, кодирующем аполипопротеин Апо(а), может быть разное (от 12 до 51) количество фрагментов ДНК, кодирующих домен аполипопротеина Апо(а).

Количество доменов «kringle» в Апо(а), таким образом, предопределяется генетически и может варьировать от 12 до 51. В результате в популяции наблюдается значительный полиморфизм и по размеру белка, и по размеру частиц ЛП(а). И поэтому молекулярная масса белка аполипопротеина Апо(а) у разных лиц может составлять от ~280 до 800 кДа; сейчас известны 34 изоформы ЛП(а).

Предполагается, что ген аполипопротеина Апо(а) произошёл в результате повторов некоторых частей гена плазминогена, причем оба гена тесно связаны друг с другом.

Аполипопротеин Апо(а) синтезируется в печени и связывается за счёт дисульфидной связи с вновь синтезированным апоВ-100. Так как оба белка взаимодействуют своими С-концевыми участками, апо В теряет аффинность к своему рецептору (ЛПНП-рецептор). Катаболизм ЛП(а), в отличие от других липопротеинов, происходит в почках, а не в печени.

В аполипопротеине Апо(а) домены kringle организованы в особый белковый «мотив», состоящий из трех петлевидных структур, стабилизированных тремя дисульфидными связями. Такой «мотив» содержится также в большом количестве белков, кодируемых генами семейства протромбинов, включающих протромбин, плазминоген, фактор роста гепатоцитов, урокиназу, фактор XII, тканевой активатор плазминогена.

Плазминоген — это предшественник (профермент) плазмина, основного фермента, расщепляющего фибриновые сгустки. Выяснилось что размер аполипопротеина (а) определяет концентрацию ЛП(а) в плазме. Чем меньше размер аполипопротеина Апо(а), т.е. чем меньше в нем доменов «kringle IV», тем выше уровень ЛП(а) в плазме и наоборот, чем длиннее молекула аполипопротеина Апо(а) – тем меньше концентрация ЛП(а).

В целом, уровень синтеза аполипопротеина Апо(а) определяется тем, как быстро секретируются его изоформы. Меньшие изоформы аполипопротеина Апо(а) секретируется быстрее и поэтому уровень ЛП(a) в плазме обратно пропорционален размеру аполипопротеина Апо(а).

 

Уровень липопротеина (a) в разных популяциях

Уровень ЛП(а) в крови определяется генетически — длиной гена, кодирующего аполипопротеин Апо(а). Как указывалось, в человеческой популяции существует много аллелей (различных вариантов) гена аполипопротеина Апо(а), которые кодируют разное количество доменов kringle IV. В общем, концентрация ЛП(а) у разных лиц может находиться в диапазоне от <0,1 до >200 мг/дл и варьировать в 1000 раз. Африканцы отличаются повышенной концентрацией ЛП(а), которая в среднем в 7 раз превышает уровень ЛП(а) в европейской и азиатской популяциях.

Начиная с раннего детства концентрация ЛП(a) возрастает, достигает плато к зрелости и остается потом практически неизменной. Дальнейшее повышение уровня ЛП(а) наблюдается только у женщин в постменопаузе.

 

Роль липопротеина (a) в патологии

Высокий уровень ЛП(а) — это фактор риска ишемической болезни сердца атеросклероза, тромбоза и инсульта. Высокий уровень ЛП(а) подобно высокому уровню ЛПНП предопределяет риск развития раннего атеросклероза. Так как ЛП(а) структурно очень близок к плазминогену, ЛП(а) обладает высоким сродством к внеклеточному матриксу и быстро накапливается в стенке сосудов. В дальнейшем белок подвергается окислению и частичному протеолизу под действием металлопротеаз, что вызывает развитие атероматозной бляшки.

ЛП(а) имеет большое сродство к фибронектину и образует комплексы с протеоглюканами и глюкозаминоглюканами экстрацеллюлярного матрикса. Это приводит к избирательному накоплению ЛП(а) в стенках сосудов и к индукции воспалительного процесса. Более того, ЛП(а) — это адгезивный субстрат для моноцитов и активирует воспалительные клетки. Обнаружено также митогенное действие ЛП(а) на гладкомышечные клетки человека, стимулирующее их рост. Также липопротеин (а) конкурирует с плазминогеном за сайты связывания на клеточной поверхности, уменьшая активацию плазминогена и ингибируя лизис кровяных сгустков.

В отличие от большинства липидных факторов риска, риск, связанный с повышенными уровнями ЛП(а), не зависит ни от возраста, ни от пола, ни от диеты, ни от условий жизни. Однако, как оказалось, факторы, способные повышать уровень ЛП(а), все же существуют. Как говорилось, катаболизм ЛП(а) происходит в почках. Ренальные патологии повышают уровень ЛП(а) из-за сниженного катаболизм его частиц.

Обнаружено что у лиц, страдающих хронической почечной недостаточностью, нефротическим синдромом и диабетической нефропатией, а также у пациентов, находящихся на гемодиализе, уровни ЛП(а) значительно повышены. Закономерно, что при ремиссии нефротического синдрома уровни ЛП(а) понижались.

Существенно, что аполипопротеин Апо(а) — это белок острой фазы (ОФ) воспаления и его концентрации могут возрастать после хирургических операций, инфаркта миокарда, инсульта и других повреждений ткани.

Несмотря на десятилетия упорных исследований, нормальная физиологическая роль ЛП(а) до сих пор точно не выяснена. Полагается, что ЛП(a) или как-то участвует в метаболизме холестеринов и триглицеридов (ибо похож на ЛПНП), или принимает какое-то участие в процессах коагуляции, ибо аполипопротеин Апо(а) похож на плазминоген. Или и то и другое вместе. ЛП(а) не является жизненно необходимым. Индивиды с практически нулевой или с исчезающе малой его концентрацией не имеют заметных патологий.

Уровни ЛП(а) у разных индивидов могут отличаться в 1000 раз. Предполагается, что ЛП(а) ускоряет заживление ран, способствует восстановлению поврежденных тканей и поврежденных сосудов. Эта гипотеза базируется на том, что ЛП(а) — положительный реактант ОФ, на том, что он узнает большое количество рецепторов, расположенных на поверхности эндотелиальных клеток, макрофагов, фибробластов и тромбоцитов. ЛП(а) также связывается с различными компонентами стенок сосудов и субэндотелиального матрикса и повышает пролиферацию гладкомышечных клеток.

В целом, ЛП(а) — это фактор риска и предиктор:

  • наследственной предрасположенности к сердечно-сосудистым и микрососудистым заболеваниям
  • генетически опосредованных острых коронарных событий
  • генетически опосредованных ишемических инсультов

Измерять уровни ЛП(а) следует:

  • у пациентов с ранними случаями ССЗ
  • у тех, у кого в семейной истории часты случаи ССЗ (подозрение на генетическую предрасположенность)
  • у тех, кому поставлен диагноз ССЗ и у кого нет традиционных факторов риска
  • у тех, у кого гиперхолестеринемия не снижается при терапии статинами
  • у пациентов с ренальными заболеваниями
  • у тех, кому назначена ангиопластика
  • у тех, кому назначено аортокоронарное шунтирование
  • при сахарном диабете 1 и 2 типа

Референсные значения ЛП(а):

  • целевой уровень <14 мг/дл
  • пограничный риск 14-30 мг/дл
  • высокий риск 31-50 мг/дл
  • очень высокий риск >50 мг/дл

Факторы, повышающие результат:

  • дефицит инсулина
  • низкий уровень свободного тироксина

Факторы, уменьшающие результат:

  • эстрогены
  • станозолол
  • ниацин
  • неомицин
  • N-ацетилцистеин
  • омега-3 - жирные кислоты (рыбий жир)

 

Лечение

Из-за того, что уровни липопротеина (a) предопределяются генетически, понизить их практически невозможно ни изменением диеты, ни снижением веса, ни обычно применяемыми препаратами (статинами).

Некоторый положительный эффект был отмечен при применении никотиновой кислоты и гормонозаместительной терапии, но эти данные нуждаются в серьезном подтверждении.

Препараты, снижающие уровни ЛП(а), пока не известны, поэтому неизвестно, приведет ли снижение уровней ЛП(а) к снижению кардиорисков.

Имеются наблюдения, что при повышенном уровне ЛП(а) имеют определенную эффективность некоторые витамины и аминокислоты: вит.С, витю В3, лизин, пролин, N-ацетилцистеин, но определенные схемы лечения не выработаны и данные методы лечения требуют серьезного клинического подтверждения.

В настоящее время активно применяются такие методы снижения гипер–ЛП(а), как каскадная плазмофильтрация и иммуносорбция.

 

Каскадная плазмофильтрация

Принцип процедуры каскадной плазмофильтрации заключается в том, что плазма крови, отделенная на первичном плазмафильтре, поступает во внутреннюю камеру фракционатора плазмы. Молекулы с большим молекулярным весом (атерогенные липопротеиды низкой и очень низкой плотности (ЛНП, ЛОНП), липопротеид (а) (Лп(а)), аутоантитела и циркулирующие иммунные комплексы и др.), присутствующие в плазме, за счет их большого размера отсекаются пористым фильтром, расположенным внутри фракционатора плазмы.

Компоненты плазмы, способные пройти через поры фильтрующего материала, проходят через пористый материал, и, соединяясь с клетками крови, возвращаются пациенту.

Клинические эффекты процедур каскадной плазмофильтрации связаны с непосредственным удалением из крови больных патогенных компонентов и с существенным улучшением микроциркуляции крови. Очищенная плазма крови за счет разницы концентраций способствует выходу из тканей накопленных там вредных веществ, например, холестерина из атеросклеротической бляшки. Поэтому повторные процедуры каскадной фильтрации плазмы приводят к постепенному очищению не только крови, но и тканей организма, растворению атеросклеротических бляшек.

Процедуры каскадной плазмафильтрации применяется при лечении атеросклероза, осложнений диабета, макулопатии, нейросенсорной тугоухости, аллергии, некоторых форм невынашивания беременности, и ряда других заболеваний.

 

Иммуносорбция

Иммуносорбция — это связывание и извлечение из крови веществ с помощью иммуносорбентов. Реакция связывания определенных молекул основана на реакции антиген — антитело.

Для иммуносорбции применяются иммуносорбционные колонки с поликлональными и моноклональными антителами к липопротеидам низкой плотности и липопротеиду (а) при коррекции дислипидемии у пациентов с наследственной (гомозиготной и гетерозиготной) формой заболевания и первичной гиперхолестеринемией, резистентной к лекарственной терапии, гиперлипопротеид (а) холестеринемией.

Принцип метода иммуносорбции основан на использовании антител, специфичных к патогенному компоненту плазмы крови человека. Колонка для иммуносорбции, содержащая антитела, включается в экстракорпоральный контур кровотока пациента.

Кровь пациента, разделяется в плазмасепараторе на клетки и плазму, плазма протекает через колонку и очищается от патогенного компонента. Очищенная плазма и клетки крови вновь соединяются и возвращаются пациенту.

Объем обработанной плазмы при проведении процедуры иммуносорбции обычно составляет 1-1.5 общего объема циркулирующей плазмы. При этом в процедуре иммуносорбции не происходит удаления никаких компонентов плазмы и крови, кроме того, который специфически сорбируется на колонке. Потеря белка при иммуносорбции не превышает 7-15% (в зависимости от типа процедуры), поэтому использования растворов замещающих плазму не требуется.

Иммуносорбционные колонки предназначены для многократного персонального использования. В процедуре иммуносорбции обычно используется пара колонок, которые работают попеременно. Этот принцип «двойной технологии» является стандартным для всех типов колонок и используется для достижения наибольшей эффективности процедуры. Обычно на каждой колонке проводят 3-8 циклов сорбции в течении одной процедуры. Между процедурами иммуносорбции колонки хранятся в консервирующем буферном растворе.

Дополнительно